0=2(x^2-4x-1040)

Simple and best practice solution for 0=2(x^2-4x-1040) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2(x^2-4x-1040) equation:



0=2(x^2-4x-1040)
We move all terms to the left:
0-(2(x^2-4x-1040))=0
We add all the numbers together, and all the variables
-(2(x^2-4x-1040))=0
We calculate terms in parentheses: -(2(x^2-4x-1040)), so:
2(x^2-4x-1040)
We multiply parentheses
2x^2-8x-2080
Back to the equation:
-(2x^2-8x-2080)
We get rid of parentheses
-2x^2+8x+2080=0
a = -2; b = 8; c = +2080;
Δ = b2-4ac
Δ = 82-4·(-2)·2080
Δ = 16704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16704}=\sqrt{576*29}=\sqrt{576}*\sqrt{29}=24\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24\sqrt{29}}{2*-2}=\frac{-8-24\sqrt{29}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24\sqrt{29}}{2*-2}=\frac{-8+24\sqrt{29}}{-4} $

See similar equations:

| y=73-13 | | x+4+3x=40 | | 8a-9a=10 | | X^2=2x-48 | | 7g-8=2g+2 | | 80=Ax2 | | 0.7x(1-x)=0.8 | | -18=-3(k+8) | | 3x–(x+4)=2(–2x–5)+6x | | 7j+4j+3+8=20 | | y=59-13 | | 4r+2=r+ | | 4a−2+6a=16 | | 22–4z=–26 | | -21+z=83 | | 3•y=66 | | 90+(x+17)+x=180 | | 5x+78+12x+34=180 | | y=37-13 | | 4d+3d+7=84 | | 22−–4z=–26 | | -4(b-10)=20 | | –3=v+–8 | | 9x−5=2x+9 | | 4(r+1)=28 | | 4a−2a+6a=16 | | 9x-25=28 | | y=29-13 | | X+16(3)=d | | -5x-12+6+2x=12* | | 7y-35=-7(y-1) | | 9x−5=2x+9* |

Equations solver categories